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In this supplementary document, we present additional
implementation details and results to complement the main
paper. We first describe in detail the formulation for ap-
plying DenseCRF to disparity refinement. We then present
additional experimental results, including evaluation using
scale-invariant errors, results on DeMoN’s testing dataset,
and the effect of input image resolutions. Finally, we show
additional qualitative comparisons with conventional MVS
algorithms.

A. DenseCRF

In DenseCRF [3], the pixel-wise classification problem
is modeled as a Markov random field characterized by a
Gibbs distribution with its energy term being the summation
of 1) the unary energy, φu and 2) the pairwise energy, φp,
over all the pixels in an image, denoted as
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where D is a labeling of the entire image, I is the reference
image, and Z is the normalization factor.

We use the negative logarithm of the probability esti-
mated by the network for each disparity level as the unary
energy for pixel-wise priors,

φu(di) =− logydi ,

and model the pairwise energy as the square of the differ-
ence in disparity levels between two predictions multiplied
by a bilateral kernel:
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where di is the predicted label for i-th pixel, xi is the x-y im-
age coordinates, and ci is the color of pixel i. Our model en-
courages the pixels which are spatially close and with simi-
lar in color to have closer disparity predictions. In all of our

Table 1. Geometric errors and scale-invariant errors on the ETH3D
Dataset and the DeMoN’s testing dataset.

Method ETH3D Dataset DeMoN Dataset
Geo. Sc.-Inv. Geo. Sc.-Inv.

DeepMVS 0.036 0.291 0.074 0.364
DeMoN [6] 0.045 0.309 0.096 0.232

experiments, we use the parameters σxy = 80, σrgb = 15,
σd = 10, and number of iterations = 5.

B. Evaluation using Scale-Invariant Errors

Since DeMoN [6] tends to predict inaccurate scaling fac-
tors, the authors in [6] quantify the performance using the
scale-invariant error, which is defined as

sc-inv =
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, where d̂i and di are the estimated disparity and the ground
truth disparity at pixel i, respectively. Table 1 shows that our
algorithm produces lower scale-invariant errors than De-
MoN on the ETH3D dataset.

C. Results on DeMoN’s Testing Dataset

We also evaluate our algorithm on the testing dataset pro-
posed in DeMoN [6] consisting of 354 image pairs. In Ta-
ble 1, we show that our algorithm results in lower geometric
errors but higher scale-invariant errors than DeMoN on this
dataset. While our algorithm is designed for handling multi-
ple images, our method still generates high-quality disparity
maps with competitive performance using only image pairs.
As our method relies on the construction of cost volume
rather than direct prediction (e.g., as in [6]), our method
has difficulty in hallucinating the disparity values for non-
overlapping or the occluded regions. Figure 1 shows several
results from the DeMoN testing dataset.
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Image1 Image2 GT DeMoN [6] Ours
Figure 1. Qualitative comparisons between DeMoN and our algo-
rithm on the testing dataset used in [6].

Table 2. Results on the ETH3D dataset using different image res-
olutions.

Method 540×360 810×540 1080×720
DeepMVS 0.038 0.036 0.037

COLMAP [4] 0.047 0.046 0.047

D. Effect of Image Resolutions

To show the capability of our algorithm for handling
different image resolutions, we compare our method with
COLMAP [4] on the ETH3D dataset [5] using three differ-
ent image resolutions: 540×360, 810×540, and 1080×720
pixels. Table 2 shows that the performance of our approach
is not affected by the image resolutions. Under all image
resolutions, our method produces lower geometric errors
than COLMAP.

E. Additional Qualitative Comparisons

We compare our algorithm with three conventional MVS
algorithms, PMVS [2], MVE [1], and COLMAP [4], on
the ETH3D dataset in Figure 2. As PMVS generates the
3D point cloud directly, the disparity maps are generated
by projecting all the 3D points in the predicted point cloud
back to each view with a splatting kernel size of 3×3 pix-
els. Our algorithm generates complete disparity maps and is
able to estimate better disparities in near-textureless regions
and reflective regions than the conventional algorithms.
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Figure 2. Qualitative comparisons between our approach and conventional MVS algorithms on ETH3D dataset.


